Definition:
Drainage ditches are open trenches used to improve drainage in relatively flat areas with wet soils. They are extensive in the Coastal Plain of the Eastern U.S., the Midwest and California. Typically, shallow (0-5 ft) ditches draining individual fields flow into deeper (5-10 ft) collection ditches that ultimately discharge into streams and other surface waters. Water enters both shallow and deeper ditches via surface and subsurface pathways or as tile drain effluent.

Purpose:
In areas with high water tables, drainage ditches effectively lower the water table to allow farm machinery to operate at critical times, such as planting. Drainage ditches act as direct conduits between agricultural fields and surface waters, so mitigating nutrient movement into and through ditches is essential to protect surface water quality.

How Does This Practice Work?
Three important management strategies can reduce nutrient losses and transport through drainage ditches:

Controlled drainage:
Water control structures at the final point of drainage outlet can be used to regulate water depth in the ditch, field-water table depth and water outflow. Water level can be lowered to allow access for farm machinery at critical times. The water level can be raised when desirable, resulting in several beneficial effects, such as (1) providing water storage in the field for use by crops during dry periods, (2) reducing the amount of drainage water by 20-30 percent, which decreases nutrient export load, (3) increasing denitrification, reducing nitrate-nitrogen losses by about 10-20 percent and (4) increasing sediment and particulate phosphorus retention.

Negative effects of water-control structures include possibly increasing dissolved phosphorus (P) losses from sediments under anaerobic conditions and maintenance costs for outlet pipes.

Vegetated buffers:
Buffers can retain nutrients and sediment, decreasing inputs into drainage ditches. Buffers are covered in more detail in another fact sheet.

Where This Practice Applies and Its Limitations:
Controlled drainage can be installed only on relatively flat sites at drainage outlets. Sediment removal is part of essential drainage ditch management, to keep them conducting water effectively. Installing buffers can remove land from production, but loss in income may be covered by cost-share.

Effectiveness:
On average, controlled drainage can reduce the loss of total nitrogen by 9 lb. acre⁻¹ yr⁻¹ or 45 percent and total P by 0.1 lb acre⁻¹ yr⁻¹ or 35 percent.
Cost of Establishing and Putting the Practice in Place:

The benefits of increased crop production and water quality will exceed costs associated with controlled drainage up to a land slope of ~0.5 percent.

Operation and Maintenance:

Sediment removal and periodic mowing of vegetation are necessary costs of maintaining effective drain function.

References:


For Further Information:

The Drainage Outlet:

http://d-outlet.coafes.umn.edu/


The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call 202-720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.